

Suite 1280 – 625 Howe St Vancouver, B.C. V6C 2T6 News Release 16-14 September 6, 2016

TSX SYMBOL: COP

www.coromining.com

CORO CONTINUES TO INTERSECT SUBSTANTIAL COPPER MINERALIZATION AT MARIMACA HIGHLIGHTED BY 190m @ 0.80%CuT & 256m AT 0.62%CuT

September 6 2016, Coro Mining Corp. ("Coro" or the "Company") (TSX Symbol: COP) is pleased to announce the results of the first 8 reverse circulation (RC) holes from a 39 hole, 8530m hole program nearing completion at its Marimaca copper project, located 22km E of the port of Mejillones in the II Region of Chile, (Figure 1). Results for the initial 2680m program of 16 RC discovery holes were released on April 28 2016 and May 6 2016. We also announce the results of the first 2 diamond drill (DDH) holes of a 6 hole, 2021m program, aimed at providing metallurgical samples and geotechnical information; to corroborate the RC drilling; and to test underlying sulphide mineralization. The DDH program is complete, the RC program is expected to finish within the next few days, and further results will be released over the coming weeks. Coro continues to conduct due diligence on the Minera Rayrock (MR) acquisition announced on August 4 2016; MR is the owner of the Ivan SXEW plant located some 18km S of Marimaca, as well as a large claim position shown on Figure 1.

Drilling Results

All 8 RC holes, MAR-17 to MAR-21 and MAR-24 to MAR-26 and both DDH holes, MAD-01 & MAD-02 intersected significant copper mineralization as shown on Tables 1a and 1b where %CuT is total copper.

MAR-17 to MAR-28 are holes aimed at defining the mineralization discovered previously on ~50m centres while MAR-29 to MAR-47 and MAR-51 to MAR-54 are step out holes on ~100m centres. Both sets were drilled with azimuths of 220° and 310°. MAR-48 to MAR-50 are exploration holes testing other anomalies.

Drill hole locations and the interpreted mineralized zone are shown on Figure 2 and in more detail on Figure 3. Drill collars for all holes are shown on Table 2 and results for holes MAR-01 to MAR-16 are shown on Table 3.

Table 1a: RC Intersections

Hole	TD		From	To	m	%CuT	Type
			8	194	186	0.28	All
			8	56	48	0.26	
MAR-17	200m		64	90	26	0.43	Oxide
IVIAN-17	200111	including	96	116	20	0.47	
			128	170	42	0.31	
				180	194	14	0.31
	250m		2	136	134	0.45	All
MAR-18		250m including	2	68	66	0.47	
			76	136	60	0.47	Oxide
			and	170	182	12	0.33

MAR-19 30			6	262	256	0.62	All
	300m	Jm.	6	56	50	0.41	
	300111	including	62	204	142	0.75	Oxide
			218	262	44	0.73	
			0	146	146	0.43	All
		including	0	54	54	0.56	Oxide
MAR-20	250m	including	60	146	86	0.37	Oxide
IVIAN-20		and	178	250	72	0.89	All
		including	178	194	16	2.29	Enriched
		including	204	250	46	0.58	Mixed
	300m		4	18	14	0.30	Oxide
		and	44	144	100	0.59	All
MAR-21		300m including	44	102	58	0.51	Oxide
			108	132	24	0.66	Oxide
			132	144	12	1.10	Enriched
	_	and	246	270	24	0.25	Mixed

Hole	TD		From	To	m	%CuT	Type
			66	84	18	0.68	Oxide
		and	110	198	88	1.19	All
			110	134	24	1.12	Oxide
MAR-24	300m		134	140	6	0.84	Enriched
		including	140	158	18	0.59	Oxide
			158	180	22	2.47	Enriched
			180	198	18	0.43	Oxide
	300m		22	38	16	0.40	Oxide
		and	82	272	190	0.80	All
			82	156	74	0.90	Oxide
MAR-25			156	182	26	0.71	Enriched
IVIAN-25		including	182	194	12	0.69	Mixed
		Including	194	234	40	0.70	Primary
			234	242	8	0.64	Oxide
			242	272	30	0.83	Primary
MAR-26	250m		56	146	90	0.66	Oxide

Table 1b: DDH Intersections

Hole	TD		From	To	m	%CuT	Type
			0	202	202	0.92	Oxide
MAD-01	421.05m	and	346	374	28	0.66	All
IVIAD-01	421.03111	including	346	352	6	1.83	Enriched
		including	352	374	22	0.34	Mixed
	322m		0	128	128	0.65	All
		322m including	0	98	98	0.75	Oxide
MAD-02B			98	116	18	0.20	Mixed
			116	128	12	0.53	Oxide
		and	136	156	20	0.21	Oxide

MAD-01 was twinned with MAR-10 and MAD-02B with MAR-11 with good correlations. A full analysis of the comparisons between RC and DDH drilling will be provided once all results are to hand.

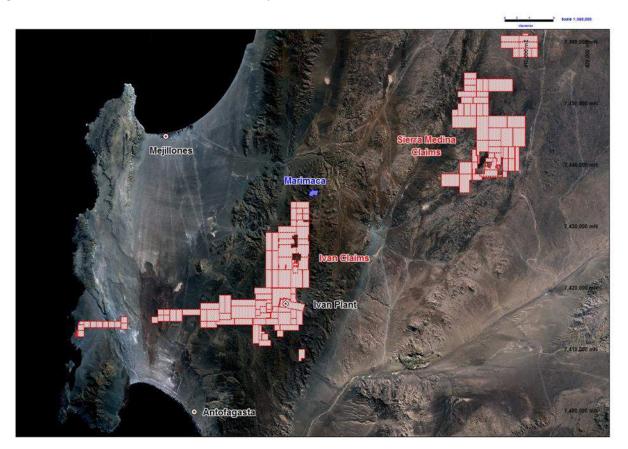
News Release 16-14

Alan Stephens, President and CEO of Coro commented, "Drilling at Marimaca continues to provide impressive intersections, both in terms of grade and thickness, with average depth of leachable mineralization now shown to be in excess of 200m. The deposit comprises a significant oxidised enrichment blanket, with some of the enrichment partially or completely preserved as mixed and enriched zones respectively. The overall control to mineralization is the major N-S trending ~60°E dipping zone of fracturing, defined as the Marimaca Structure, cross cut by NE-SW oriented feeder structures, dipping to the SE. The host rock is a coarse grained Jurassic diorite intrusive intruded by a late mineral diorite and cross cut by post mineral andesitic sills and dykes. Strong potassic alteration and magnetite introduction accompanies the mineralization. Acid solubilities in the oxide zone are good at 74% for all assays > 0.1%CuT and rising to 80% for >0.3%CuT. We look forward to reporting the next batch of results in due course."

Marimaca Agreement Terms

Coro has the right to earn a 75% interest in the property as follows;

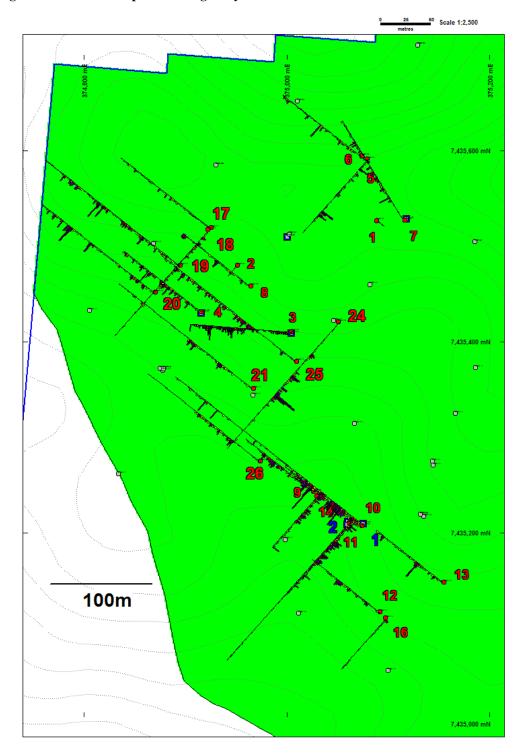
- 51% interest earned in Compañia Minera Newco Marimaca (CMNM) with a \$125k payment together with completion of a NI43-101 resource estimate and engineering study that demonstrates the technical and economic feasibility of producing a minimum of 1.5ktpy Cu cathode by August 6th 2018 at Coro's cost,
- Additional 24% interest in CMNM earned by Coro upon obtaining financing for the project construction
- The owner's interest will comprise a 15% interest free carried to commencement of commercial production and a 10% participating interest subject to dilution. The owners at their election may request Coro to loan them the equity portion corresponding to their 10% interest, if any, recoverable by Coro from 100% of the project's free cash flow after debt repayments
- Coro retains a first right of refusal


Sampling and Assay Protocol

True widths cannot be determined with the information available at this time. Coro RC holes were sampled on a 2 m continuous basis, with dry samples riffle split on site and one quarter sent to the Geolaquim laboratory in Copiapo, Chile by Coro personnel for preparation and assaying. A second quarter was stored on site for reference. DDH holes were logged, split and sampled on site by Coro personnel and one half of the core sent to Geolaquim. Samples were prepared using the following standard protocol: drying, crushing to better than 80% passing -10#, homogenizing, splitting and pulverizing a 400 g subsample to 95% passing -150#. All samples were assayed for CuT (total copper) and samples >0.1%CuT assayed for CuS (acid soluble copper) by AAS. A full QA/QC program, involving insertion of appropriate blanks, standards and duplicates was employed with acceptable results. Samples showing significant secondary sulphides will be assayed for CNCu (cyanide soluble copper) in due course.

Sergio Rivera, Vice President of Exploration, Coro Mining Corp, a geologist with more than 32 years of experience and a member of the Colegio de Geologos de Chile and of the Instituto de Ingenieros de Minas de Chile, was responsible for the design and execution of the exploration program and is the Qualified Person for the purposes of NI 43-101. Alan Stephens, FIMMM, President and CEO, of Coro Mining Corp, a geologist with more than 40 years of experience, and a Qualified Person for the purposes of NI 43-101, is responsible for the contents of this news release.

Figure 1: Location of Marimaca and Minera Rayrock Claims



Figure~2:~Marimaca~Drill~Plan,~Showing~RC~holes~with~assays~in~red,~DDH~holes~in~blue~and~remaining~RC~holes~in~grey

Figure 3: Detailed drill plan showing assayed MAR holes in red and MAD holes in blue

Table 2: Marimaca Drill Collars

Hole	East	North	Elev	Azimuth	Inclination	TD
MAR-01	375,089	7,435,527	1,109	0	-90	140
MAR-02	374,951	7,435,480	1,097	0	-90	150
MAR-03	375,004	7,435,411	1,095	275	-60	200
MAR-04	374,916	7,435,432	1,057	310	-60	200
MAR-05	375,079	7,435,592	1,127	220	-60	200
MAR-06	375,074	7,435,595	1,127	310	-60	200
MAR-07	375,116	7,435,527	1,114	330	-55	210
MAR-08	374,965	7,435,459	1,098	310	-55	150
MAR-09	375,026	7,435,244	1,034	310	-55	150
MAR-10	375,074	7,435,207	1,050	310	-55	170
MAR-11	375,061	7,435,210	1,051	220	-55	170
MAR-12	375,092	7,435,118	1,047	310	-55	150
MAR-13	375,155	7,435,148	1,057	310	-55	150
MAR-14	375,029	7,435,238	1,033	220	-55	120
MAR-15	375,315	7,434,985	1,023	310	-55	200
MAR-16	375,097	7,435,111	1,046	220	-55	120
MAR-17	374,925	7,435,520	1,103	310	-55	200
MAR-18	374,922	7,435,517	1,104	220	-55	250
MAR-19	374,895	7,435,480	1,084	310	-55	300
MAR-20	374,870	7,435,452	1,062	310	-55	250
MAR-21	374,967	7,435,351	1,066	310	-55	300
MAR-22	374,967	7,435,344	1,066	220	-55	260
MAR-23	375,046	7,435,423	1,091	310	-55	300
MAR-24	375,051	7,435,421	1,091	220	-55	300
MAR-25	375,010	7,435,380	1,081	310	-55	300
MAR-26	374,974	7,435,275	1,059	310	-55	250
MAR-27	374,998	7,435,193	1,027	310	-55	250
MAR-28	374,834	7,435,262	1,063	310	-55	190
MAR-29	375,066	7,435,315	1,054	310	-55	250
MAR-30	375,011	7,435,116	1,021	310	-55	250

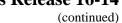

MAR-31	375,099	7,435,056	1,026	310	-55	200
MAR-32	374,805	7,435,433	1,066	310	-55	100
MAR-33	374,878	7,435,370	1,061	310	-55	200
MAR-33B	374,875	7,435,372	1,061	310	-55	200
MAR-34	375,131	7,435,220	1,085	310	-55	200
MAR-35	375,143	7,435,275	1,098	310	-55	200
MAR-36	375,144	7,435,271	1,098	220	-55	200
MAR-37	375,186	7,435,373	1,109	310	-55	200
MAR-38	375,247	7,435,420	1,117	310	-55	200
MAR-39	375,134	7,435,217	1,085	270	-55	200
MAR-40	375,131	7,435,220	1,085	220	-55	200
MAR-41	375,185	7,435,505	1,116	310	-55	300
MAR-42	375,002	7,435,513	1,130	310	-55	200
MAR-43	374,930	7,435,585	1,122	310	-55	200
MAR-44	374,930	7,435,585	1,026	220	-55	200
MAR-45	375,010	7,435,652	1,090	310	-55	100
MAR-46	375,129	7,435,711	1,078	310	-55	80
MAR-47	375,129	7,435,711	1,078	220	-55	150
MAR-48	375,665	7,435,240	1,066	310	55	200
MAR-49	375,635	7,435,160	1,064	310	55	200
MAR-50	375,445	7,435,155	1,048	310	55	200
MAR-51	375,166	7,435,325	1,101	310	-55	300
MAR-52	375,082	7,435,460	1,088	310	-55	250
MAR-53	374,868	7,435,503	1,080	220	-55	200
MAR-54	374,878	7,435,372	1,059	220	-55	200
MAD-01	375,075	7,435,210	1,050	310	-55	421
MAD-02	375,060	7,435,212	1,051	220	-55	22
MAD-02B	375,059	7,435,209	1,051	220	-55	322
MAD-03	375,004	7,435,409	1,095	277	-60	406
MAD-04	375,000	7,435,510	1,132	220	-55	320
MAD-05	374,915	7,435,430	1,058	310	-60	300
MAD-06	375,118	7,435,529	1,113	330	-55	230

Table 3: MAR-01 to MAR-16 Intersects released previously

Hole	TD		From	То	m	%CuT	Туре
MAR-01	140m		10	40	30	0.91	Oxide
IVIAN-UI	140111	and	92	108	16	0.34	Mixed
MAR-02	150m		2	18	16	0.37	Oxide
IVIAIN-UZ 130III	130111	and	64	144	80	0.72	Oxide
			0	200	200	0.81	All
MAR-03	200m		0	158	158	0.69	Oxide
IVIAIN-03	200111	including	158	190	32	1.42	Enriched
			190	200	10	0.70	Mixed
MAR-04	200m		0	200	200	0.71	Oxide
			0	168	168	0.54	All
			0	28	28	0.71	Oxide
	200m	n including	28	34	6	Stope	
			34	48	14	0.56	
MAR-05			48	52	4	Stope	
			52	62	10	0.58	
			70	94	24	0.41	Mixed
			94	106	12	0.34	Enriched
			122	168	46	0.77	
			14	196	182	0.42	All
			14	54	40	0.57	Oxide
MAR-06	AR-06 200m		54	88	34	0.24	Mixed
		including	94	180	86	0.39	Enriched
			180	196	16	0.69	Mixed
			100	130		0.03	Wilked
			40	210	170	0.53	All
			40	104	64	0.70	Oxide
MAR-07	210m	including	104	184	80	0.49	Mixed
			184	210	26	0.20	Enriched
							
	4=0		2	94	92	0.42	_
MAR-08	150m	and	130	150	20	0.60	Oxide

MAR-09	150m		36	120	84	0.78	Oxide		
			0	158	158	1.08	All		
MAR-10	170m	including	0	150	150	1.13	Oxide		
	Including	150	158	8	0.27	Mixed			
			0	150	150	0.74	All		
MAR-11	170m	including	0	96	96	0.95	Oxide		
		including	96	150	54	0.38	Mixed		
MAR-12	150m		0	118	118	0.47	Oxide		
MAR-13	150m		8	150	142	0.49	Oxide		
	IAR-14 120m				4	120	116	0.65	All
MAR-14		including	4	80	76	0.79	Oxide		
				including	80	120	40	0.39	Mixed
MAR-15	200m		28	48	20	0.39	Oxide		
IVIAN-13	200111	and	172	200	28	0.40	Oxide		
	•								
MAR-16	120m		2	44	42	0.32	Oxide		

CORO MINING CORP.

"Alan Stephens"

Alan Stephens President and CEO

About Coro Mining Corp.:

Coro's strategy is to grow a mining business through the discovery, development and operation of "Coro type" deposits. These are defined as projects at whatever stage of development, that are well located with respect to infrastructure and water, which have low permitting risk, and which have the potential to achieve a short and cost effective timeline to production. Our preference is for open pit heap leach copper projects, where we will seek to minimise capital investment rather than maximise NPV, where we will prioritise profitability over production rate, and finally, where the likely capital cost is financeable relative to our market capitalization. The Company's assets include its 65% interest in SCM Berta; the Marimaca project; the Llancahue prospect, optioned to Industrias Peñoles; and a royalty on the San Jorge copper-gold project located in Argentina.

News Release 16-14

For further information please visit the Company's website at www.coromining.com or François Perron at Renmark Financial Communications Inc at (416) 644-2020 or (514) 939-3989 or fperron@renmarkfinancial.com or www.renmarkfinancial.com.

This news release includes certain "forward-looking statements" under applicable Canadian securities legislation. Such forward-looking statements or information, include but are not limited to those with respect to the geological potential and size of Marimaca. Forward-looking statements involve known and unknown risks, uncertainties and other factors which are beyond Coro's ability to predict or control and may cause Coro's actual results, performance or achievements to be materially different from any of its future results, performance or achievements expressed or implied by forward-looking statements. These risks, uncertainties and other factors include, but are not limited to, the operation of the Nora Plant, copper price volatility, and changes in debt and equity markets. Such forward-looking statements are also based on a number of assumptions which may prove to be incorrect, changes in project parameters as plans continue to be evaluated, as well as those factors disclosed in the Company's documents filed from time to time with the securities regulators in the Provinces of British Columbia, Alberta, Saskatchewan, Manitoba, Ontario, New Brunswick, Nova Scotia, Prince Edward Island and Newfoundland and Labrador.

Accordingly, readers should not place undue reliance on forward-looking statements. Coro undertakes no obligation to update publicly or otherwise revise any forward-looking statements contained herein whether as a result of new information or future events or otherwise, except as may be required by law.